# 伪多边形

iπ/λ

{∞}

## 扭歪伪多边形

 围绕着伪多边形的三角形也可以构造出等边扭歪伪多边形

{3,7}的皮特里多边形 t{3,7}的皮特里多边形

## 镶嵌与密铺

∞.∞ 2 4.4.∞ 3.3.3.∞
{iπ/λ, 2}
{2, iπ/λ}
t{2, iπ/λ}
sr{2, iπ/λ}

{9i,9i}

t{9i,9i}

r{9i,9i}

2t{9i,9i}=t{9i,9i}

2r{9i,9i}={9i,9i}

rr{9i,9i}

tr{9i,9i}

sr{9i,9i}

[iπ/λ,3]非紧凑双曲半正镶嵌系列

(∞32)
[1+,iπ/λ,3]
(*∞33)
[iπ/λ,3+]
(3*∞)

=

=

=
=
or
=
or

=

V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞

Zn n n• [n]+ n
Dn nm *n• [n] 2n

Z ∞• [∞]+
Dih m *∞• [∞]

Z [πi/λ]+
Dih [πi/λ]

## 参考文献

1. ^ Norman Johnson, Geometries and symmetries, (2015), Chapter 11. Finite symmetry groups, Section 11.2 The polygonal groups. p.141
2. ^ HSKR, K. L. Dr. cjl. 1989. PhD Thesis. SIMON FRASER UNIVERSITY.
3. ^ 台北盆地聚落发展之空间分析 国立台湾大学地理环境资源学系暨研究所 2005-10-31
4. ^
5. ^ Coxeter, H. S. M. Regular Polytopes 3rd ed. New York: Dover Publications. 1973: 121–122. ISBN 0-486-61480-8. p.296, Table II: Regular honeycombs
6. ^ John Baez, Visual insights: {7,3,3} Honeycomb页面存档备份，存于互联网档案馆） (2014/08/01)
7. ^ Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)