万维百科

利萨茹曲线

利萨茹图形在示波器上
三维利萨茹图形

数学上,利萨茹(Lissajous)曲线(又称利萨茹图形李萨如图形鲍迪奇(Bowditch)曲线)是两个沿着互相垂直方向的正弦振动的合成的轨迹。

纳撒尼尔·鲍迪奇在1815年首先研究这一族曲线朱尔·利萨茹在1857年作更详细研究。

数学定义

利萨茹曲线由以下参数方程定义:

其中

称为曲线的参数,是两个正弦振动的频率比。若比例为有理数,则,参数方程可以写作:

其中

性质

  • 为无理数,曲线在长方形稠密
  • 为有理数,
    • 曲线是代数曲线对奇数,或对偶数
    • 曲线是代数曲线的一部分若对奇数,或对偶数
  • 为偶数而,或若为奇数而,则曲线是第切比雪夫多项式的曲线的一部分。

特别情况

  • ,则曲线是椭圆
    • ,则这椭圆其实是
    • ,则这椭圆其实是线段。
  • (所以),则曲线是besace。
    • ,则这besace是抛物线一部分。
    • ,则这besace是一个热罗诺双纽线

以下是利萨茹曲线的例子,其中, 是奇数,是偶数,

在电子学上的应用

借由使用利萨茹图形可以测量出两个信号频率比与相位差。

外部链接


本页面最后更新于2021-05-27 10:58,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器