万维百科

博苏克-乌拉姆定理本文重定向自 博苏克-乌拉姆定理

博苏克-乌拉姆定理表明,任何一个从n维球面欧几里得n维空间连续函数,都一定把某一对对跖点映射到同一个点。

n = 2的情形,就是说在地球的表面上,一定存在一对对跖点,它们的温度和气压相同。这里假设了温度和气压的变化是连续的。

这个定理首先由乌拉姆猜想。1933年,Karol Borsuk证明了该定理。从博苏克-乌拉姆定理可以推出布劳威尔不动点定理

一个关于博苏克-乌拉姆定理的更强的陈述,是每一个保持对跖点的映射

都具有奇次数

推论

  • Rn的任何子集都不与Sn同胚
  • 如果用n + 1个开集来覆盖球面Sn,那么其中一定有一个开集含有一对对跖点(与博苏克-乌拉姆定理等价)。
  • 火腿三明治定理(对于任何Rn内的紧集,我们总可以找到一个超平面,把每一个紧集都分成两个具有相同测度的子集)。

参见

参考文献


本页面最后更新于2021-06-26 08:07,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器