万维百科

可数性公理

在数学相关领域,可数性公理是假定特定数学物件(通常是范畴的物件)存在特定性质的可数集的相关公理。没有这种公理,该可数集可能根本不存在。

重要例子

一些拓扑空间中的重要例子包括

各空间之间的关系

这些公理有以下关系。

  • 所有第一可数空间都是序列空间。
  • 所有第二可数空间都是第一可数空间、可分空间及林德勒夫空间。
  • 所有σ紧空间都是林德勒夫空间。
  • 所有度量空间都是第一可数空间。
  • 对于度量空间,第二可数空间、可分空间及林德勒夫空间是等价的。

参考资料

  1. ^ Nagata, J.-I., Modern General Topology, North-Holland Mathematical Library 3rd, Elsevier: 104, 1985, ISBN 9780080933795.

本页面最后更新于2021-05-26 14:33,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器