# 四角化立方体

(按这里观看旋转模型)

dtO

24
36

${\displaystyle \arccos(-{\frac {4}{5}})}$

、面可递

 V4.6.6（顶点图） 截角正八面体(对偶多面体) (展开图)

## 性质

### 顶点坐标

${\displaystyle \left(0\,,\quad 0\,,\quad \pm {\frac {9{\sqrt {2}}}{8}}\right)}$
${\displaystyle \left(\pm {\frac {9{\sqrt {2}}}{8}}\,,\quad 0\,,\quad 0\right)}$
${\displaystyle \left(0\,,\quad \pm {\frac {9{\sqrt {2}}}{8}}\,,\quad 0\right)}$
${\displaystyle \left(\pm {\frac {3{\sqrt {2}}}{4}}\,,\quad \pm {\frac {3{\sqrt {2}}}{4}}\,,\quad \pm {\frac {3{\sqrt {2}}}{4}}\right)}$

[4] [3] [2] 歪斜

## 正交投影

投影对称性 四角化立方体 截角八面体 [2] [4] [6]

## 使用

 四角化立方体骰子

## 相关多面体与镶嵌

{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}

V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3

*n32变异对称性 n.6.6 的截角镶嵌：

*n42
[n,3]

*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]

n角化

## 四角化立方体图

6 (8个)

36

### 性质

${\displaystyle x^{2}{\left(x+1\right)}^{3}{\left(x+3\right)}{\left(x^{2}-3x-12\right)}{\left(x^{2}-x-4\right)}^{3}}$