万维百科

子环

环论
Latex integers.svg

设(R,+,·)为,若S是R的一个非空子集,且(S,+,·)也是环,则称(S,+,·)为(R,+,·)的子环(subring)。

判定

设(R,+,·)为环,S是R的一个非空子集。(S,+,·)是(R,+,·)的子环,当且仅当:

  1. R的零元也在S里
  2. ∀a,b∈S, a+b∈S
  3. ∀a∈S, -a∈S
  4. ∀a,b∈S, ab∈S

或等价地:

  1. ∀a,b∈S, a-b∈S
  2. ∀a,b∈S, ab∈S

也就是说:

  1. S和+构成一个
  2. ∀a,b∈S, ab∈S

如果要求环还包含乘法单位元,那么就要在上述条件加上1∈S这一条。

参考资料

  1. ^ Frederick Michael Hall. An Introduction to Abstract Algebra. CUP Archive. 1966: 77.

本页面最后更新于2021-05-30 22:49,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器