万维百科

审敛法

无穷级数
无穷级数

数学领域,收敛性判别法是判断无穷级数收敛、条件收敛绝对收敛、区间收敛或发散的方法。

判别法列表

通项极限判别法

如果序列通项的极限不为零或无定义,即,那么级数不收敛。在这种意义下,部分和是柯西数列的必要条件是极限存在且为零。这一判别法在通项极限为零时无效。

比值审敛法(检比法)

假设对任何的。如果存在使得:

如果,那么级数绝对收敛。如果,那么级数发散。如果,比例判别法失效,级数可能收敛也可能发散,此时可以考虑高斯判别法。

高斯判别法

是要判断审敛性的级数,其中(至少从某一项开始)。倘若其相邻项比值可以被表示为:

其中都是常数,而是一个有界的序列,那么

  • 时,级数收敛;
  • 时,级数发散。


根值审敛法(检根法)

其中表示上极限(可能为无穷,若极限存在,则极限值等于上极限)。

如果,级数绝对收敛。如果,级数发散。如果,开方判别法无效,级数可能收敛也可能发散。

积分判别法

级数可以与积分式比较来确定其敛散性。令为一正项单调递减函数。如果:

那么级数收敛。如果积分发散,那么级数也发散。

比较审敛法

如果是一个绝对收敛级数且对于足够大的n,有,那么级数也绝对收敛。

极限比较审敛法

如果,并且极限存在非零,那么收敛当且仅当收敛。

交错级数判别法

具有以下形式的级数。其中所有的,被称作交错级数。如果当趋于无穷时,数列的极限存在且等于,并且每个小于或等于(即数列单调递减的),那么级数收敛。如果是级数的和那么部分和逼近有截断误差

阿贝尔判别法

给定两个实数数列,如果数列满足收敛,单调有界的,则级数收敛。

参阅

外部链接


本页面最后更新于2021-08-14 21:06,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器