万维百科

对数微分法

对数微分法是在微积分学中,通过求某函数f对数导数英语Logarithmic derivative来求得函数导数的一种方法,

这一方法常在函数对数求导比对函数本身求导更容易时使用,这样的函数通常是几项的积,取对数之后,可以把函数变成容易求导的几项的和。这一方法对幂函数形式的函数也很有用。对数微分法依赖于链式法则对数的性质(尤其是自然对数),把积变为求和,把商变为做差。这一方法可以应用于所有恒不为0的可微函数

概述

对于某函数

运用对数微分法,通常对函数两边取绝对值后取自然对数。

运用隐式微分法,可得

两边同乘以y,则方程左边只剩下dy/dx

对数微分法有用,是因为对数的性质可以大大简化复杂函数的微分,常用的对数性质有:

通用公式

有一如下形式的函数,

两边取自然对数,得

两边对x求导,得

两边同乘以,可得原函数的导数为

应用

积函数

对如下形式的两个函数的积函数

两边取自然对数,可得如下形式的和函数

应用链式法则,两边微分,得

整理,可得

商函数

对如下形式的两个函数的商函数

两边取自然对数,可得如下形式的差函数

应用链式法则,两边求导,得

整理,可得

右边通分之后,结果和对运用除法定则所得结果相同。

复合指数函数

对于如下形式的函数

两边取自然对数,可得如下形式的积函数

应用链式法则,两边求导,得

整理,得

与将函数f看做指数函数,直接运用链式法则所得结果相同。

参见

外部链接


本页面最后更新于2021-07-05 19:00,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器