万维百科

序列紧

数学上, 若一个拓扑空间里,每个无穷序列都有收敛子序列,则称该拓扑空间序列紧(英语:sequentially compact)。 虽然对于度量空间等价于序列紧,但是对于一般的拓扑空间来说,(英语:compact)和序列紧是两个不等价的性质。

例子和性质

实数轴上的标准拓扑不是序列紧的,例如 (sn = n) 便是一个没有收敛子序列的序列。

若一个空间是度量空间,则其为序列紧当且仅当其为紧。 然而,一般情况下,存在序列紧而非紧的拓扑空间,比如具有序拓扑首个不可数序数,也存在紧而非序列紧的拓扑空间,比如由 多个 单位闭区间组成的积空间

有关概念

  • 若拓扑空间 X 的任意无穷子集都有一个极限点X 中,则称 X 为聚点紧的。
  • 若拓扑空间 X 的任意可数开覆盖都有一个有限子覆盖,则称 X 为可数紧的。

对于度量空间,序列紧、聚点紧、可数紧、紧都是互相等价的性质。

对于序列空间,序列紧与可数紧等价。

单点紧化的意思是,在拓扑空间中加入一点,然后要求所有无收敛子序列的序列都收敛到该额外的点。

相关条目

参考来源

  1. ^ Willard, 17G, p. 125.
  2. ^ Steen and Seebach, Example 105, pp. 125—126.
  3. ^ Engelking, General Topology, Theorem 3.10.31
    K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon)
  4. ^ Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.

参考书目

  • Munkres, James. Topology 2nd. Prentice Hall. 1999. ISBN 0-13-181629-2.
  • Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
  • Willard, Stephen. General Topology. Dover Publications. 2004. ISBN 0-486-43479-6.

本页面最后更新于2021-07-15 14:53,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器