万维百科

积分第二中值定理

中值定理

相关条目微积分学

积分第二中值定理是与积分第一中值定理相互独立的一个定理,属于积分中值定理。它可以用来证明Dirichlet-Abel反常Riemann积分判别法。

内容

若g,(f·g)均在[a,b]上Riemann可积且f(x)在[a,b]上单调,则存在[a,b]上的点ξ使

退化态的几何意义

令g(x)=1,则原公式可化为:存在[a,b]上的点ξ使


本页面最后更新于2021-08-18 15:54,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器