万维百科

素环

抽象代数中,一个非零的 R 称作素环,若R满足以下条件中的一个(这几个条件是等价的):

  • ∀a, b,r∈ R,有arb = 0 ⇒ a = 0 或 b = 0。
  • ∀R上的双边理想P,Q,若PQ = (0) ⇒ P=(0) 或 Q=(0)。

素环同时推广了整环与域上的矩阵环

例子

  • 整环。
  • 单环
  • 整域上的矩阵环。

性质

  • 含单位元的交换环是素环的充要条件是它是整环。
  • 一个环是素环当且仅当 (0) 是素理想
  • 一个非零环是素环当且仅当其双边理想在乘法下构成的幺半群无零因子。
  • 布于素环上的矩阵环仍是素环

文献

  • I.N. Herstein, Noncommutative rings (1968) , Math. Assoc. Amer.

本页面最后更新于2021-07-02 20:06,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器