万维百科

纯粹数学本文重定向自 纯粹数学

一般而言,纯粹数学是一门专门研究数学本身,不以应用为目的的学问(至少可见范围内无法应用),相对于应用数学而言。纯粹数学以其严格、抽象和美丽著称。自18世纪以来,纯粹数学成为数学研究的一个特定种类,并随着探险天文学物理学工程学等的发展而发展。

纯粹数学以数论数理逻辑为其代表。

历史

19世纪

“纯粹数学”这个词是从Sadleirian Chair英语Sadleirian Chair这个19世纪中期建立的教授职位的全名而来的。“纯粹”数学作为一门独立的学科的想法可能就是从那个时候发展起来的。高斯一代的数学家没有彻底地区分过“纯粹”和“应用”。之后,专门化和专业化,特别是魏尔施特拉斯研究数学分析的方法,使得两者的区别越来越大。

20世纪

进入20世纪,数学家们受到希尔伯特的影响,开始使用公理系统罗素提出了“纯粹数学”的逻辑公式化方法,以量化命题为形式。随着数学的公理化,这些公式变得越来越抽象,“严格证明”成为了简单的标准。

实际上在公理系统中,“严格”在“证明”中没有任何新意。以布尔巴基小组的观点,纯粹数学就是已经被证明了的公理。纯粹数学家成为普遍接受的职业,可以通过训练而取得。

一般化与抽象

纯粹数学的一个核心思想就是一般化,它常常有一种更加一般化的趋势。

  • 将定理或数学结构一般化能使对其理解更深
  • 一般化能够简化表达,使证明更短
  • 利用一般化可避免重复证明
  • 一般化可为不同数学分支的联系带来便利。范畴论即是探索这种关联和共性的一个数学领域。

纯粹主义

关于纯粹数学应用数学,数学家们总有不同的见解。有人认为,最有名的现代例子莫过于戈弗雷·哈罗德·哈代一个数学家的辩白

通常认为,哈代认为应用数学非常丑陋和枯燥。哈代偏爱纯粹数学,常把纯粹数学跟画和诗相提并论。他认为应用数学只不过是在数学框架内寻求世界的物理原理,而纯粹数学则表达了独立于物理世界的另一种真实。在他眼中,“真实”数学“具有永恒的美学价值”,而“数学的基本和枯燥的部分”拥有实用价值。

参考


本页面最后更新于2021-08-01 14:32,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器