万维百科

良序定理

在数学中,良序定理(英语:Well-ordering theorem)表示“所有集合都可以被良序排序”。这是非常重要的,因为它使所有集合均适用于超限归纳法

历史

康托尔认为良序定理是“思维的基本原理”。但是多数数学家发现,想找如实数集合R这样的良序集合是困难的。在1904年朱利叶斯·科尼格英语Julius König声称已经证明了这种良序不能存在。几周之后,费利克斯·豪斯多夫在他的证明中发现了一个错误。接着恩斯特·策梅洛引入了“无可非议”的选择公理,以证明良序定理。事实上在一阶逻辑下,良序定理等价于选择公理,其中一个和策梅洛-弗兰克尔集合论一起即可证明另一个;在二阶逻辑下良序定理略强于选择公理。

良序定理可给出似乎是悖论的推论,比如巴拿赫-塔斯基悖论

参见


本页面最后更新于2021-08-19 15:20,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器