万维百科

阿廷模

阿廷模抽象代数中一类满足降链条件的模。

定义

以下固定一个 。设 为左 -,当 满足下列,则称 阿廷模

对所有由 的子模构成的降链 ,存在 使得 ;换言之,此降链将会固定。

若将上述定义中的左模换成右模,可得到右阿廷模的定义。

性质

  • -代数,任何在 上有限维的 -模都是阿廷模。
  • ,且 皆为阿廷模,则 为阿廷模。
  • 阿廷模的子模与商模皆为阿廷模。
  • 阿廷模与环的性质差异之一,在于有非诺特模的阿廷模,以下将给出一个例子:
,视之为 -模。升链
不会固定,因此 并非诺特模。然而我们知道 的任何子模皆形如 ,由此可知任何降链皆可写成
其中 ,故将固定,于是 是阿廷模。

文献

  • Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X

本页面最后更新于2021-08-27 14:23,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器