# 鸢形二十四面体

(按这里观看旋转模型)

deC

24
48

arccos(−7 + 4217)

、 面可递

 V3.4.4.4（顶点图） 小斜方截半立方体(对偶多面体) (展开图)

## 性质

### 体积与表面积

{\displaystyle {\begin{aligned}A&=6{\sqrt {29-2{\sqrt {2}}}}\,a^{2}\\V&={\sqrt {122+71{\sqrt {2}}}}\,a^{3}\end{aligned}}}

### 顶点坐标

${\displaystyle \left(0\,,\quad 0\,,\quad \pm {\sqrt {2}}\right)}$
${\displaystyle \left(\pm {\sqrt {2}}\,,\quad 0\,,\quad 0\right)}$
${\displaystyle \left(0\,,\quad \pm {\sqrt {2}}\,,\quad 0\right)}$
${\displaystyle \left(\pm 1\,,\quad 0\,,\quad \pm 1\right)}$
${\displaystyle \left(\pm 1\,,\quad \pm 1\,,\quad 0\right)}$
${\displaystyle \left(0\,,\quad \pm 1\,,\quad \pm 1\right)}$
${\displaystyle \left(\pm {\frac {4+{\sqrt {2}}}{7}}\,,\quad \pm {\frac {4+{\sqrt {2}}}{7}}\,,\quad \pm {\frac {4+{\sqrt {2}}}{7}}\right)}$

## 正交投影

投影对称性 图像 对偶图像 [2] [4] [6]

## 相关多面体与镶嵌

 鸢形二十四面体 复合八面体立方体与左图同一个角度

{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}

V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3
*变异的n42对称性对偶扩展镶嵌系列：V3.4.n.4

*n32英语Orbifold notation
[n,3]英语Coxeter notation

*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4.∞.4

3.4.2.4

3.4.3.4

3.4.4.4

3.4.5.4

3.4.6.4

3.4.7.4

3.4.8.4

3.4.∞.4

## 鸢形二十四面体图

### 性质

${\displaystyle x^{8}{\left(x^{2}-14\right)}{\left(x^{2}-8\right)}^{3}{\left(x^{2}-2\right)}^{5}}$