万维百科

p-群

数学里,给定一质数pp-群即是指一个其每个元素都有p的次方阶的周期群。亦即,对每个群内的元素g,都存在一个正整数n使得gpn次方等于其单位元素

G是有限的,则其会和G自身的p的次方之叙述相等价。关于有限p-群的结构已知道了许多,其中第一个使用类方程的标准结论为一个非当然有限p-群的中心不可能为一个当然子群。一个pn阶的p-群会包含着pi阶的子群,其中0 ≤ in。更一般性地,每一个有限p-群都会是幂零群,且因此都会是可解群

有相同阶的p-群不一定会互相同构;例如,循环群C4克莱因四元群都是4阶的2-群,但两者并不同构。一个p-群不一定要是阿贝尔群;如8阶的二面体群即为一个非可换2-群。(但每个p2阶的群都会是可换的。)

以趋进的观点来看,几乎所有的有限群都会是p-群。实际上,几乎所有的有限群都是2-群:2-群的同构类与其阶至多为n之群的同构类的比例在当n趋进于无限大时会趋进于1。例如,其阶至多为2000的所有不同的群会有99%为1024阶的2-群。

每一个非当然有限群都会包括一个为非当然p-群之子群。详述请见西洛定理

无限群的例子,见普吕弗群。

另见

参考

  1. ^ Besche, Hans Ulrich, Bettina Eick and Eamonn O'Brien. (2001) 小群图书馆页面存档备份,存于互联网档案馆

本页面最后更新于2021-08-17 12:32,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器