万维百科

完备性本文重定向自 完备

数学及其相关领域中,一个对象具有完备性(英语:Completeness),即它不需要添加任何其他元素,这个对象也可称为完备的完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域紧化哥德尔不完备定理

  • 泛函分析中,一个拓扑向量空间子集被称为是完全的,如果的扩张在中是稠密的。如果可分空间,那么也可以导出中的任何向量都可以被写成中元素的(有限或无限的)线性组合。更特殊地,在希尔伯特空间中(或者略一般地,在线性内积空间(inner product space)中),一组标准正交基就是一个完全而且正交的集合。
  • 一个测度空间完全的,如果它的任何零测集null set)的任何子集都是可测的。请查看完全测度空间(complete measure)。
  • 图论中,一个被称为完全的,如果这个图是无向图,并且任何两个顶点之间都恰有一条边连接。
  • 范畴论,一个范畴被称为完备的,如果任何一个从小范畴到函子都有极限。而它被称为上完备的,如果任何函子都有一个上极限。请查看范畴论中的极限定义。
  • 数理逻辑,一个理论被称为完备的,如果对于其语言中的任何一个句子,这个理论包括且仅包括。一个系统是相容的,如果不存在同时和非的证明。哥德尔不完备定理证明了,包含皮亚诺公理的所有公理系统都是不可能既完备又相容的。下面还有一些逻辑中关于完备性的定义。
  • 证明论和相关的数理逻辑的领域中,一个形式的演算相对于一个特定的逻辑(即相对于它的语义)是完备的,如果任何由一组前提根据语义导出的陈述,都可以从这组前提出发利用这个演算语法地导出。形式地说,导出一阶逻辑在这个意义下是完备的。特别地,所有逻辑的重言式都可以被证明。即使在经典逻辑中,这与前述的完备性是不同的(即一个陈述和否定陈述对于这个逻辑而言不可能是重言式)。相反的概念被称为可靠性soundness)。
  • 计算复杂度理论中,一个问题对于一个复杂度类,在某个给定类型的归约下是完全的完备 (复杂度)),如果中,并且中的任何问题利用该归约都可以化归到。例如,NP完全问题NP类和多项式时间和多对一归约的意义下是完全的。

本页面最后更新于2021-09-18 18:10,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器