万维百科

无穷公理

公理化集合论和使用它的逻辑数学计算机科学中,无穷公理Zermelo-Fraenkel 集合论公理之一。

形式陈述

在 Zermelo-Fraenkel 公理的形式语言中,这个公理读作:

或用非形式化的语言陈述:存在一个集合,使得空集中,并且只要的成员,则与它的单元素集合此两者的并集也是的成员。这种集合有时也叫做归纳集合。归纳集合是带有如下性质的集合:对于所有的后继也是的一个元素

解释

要理解这个公理,首先我们要定义的后继为。注意配对公理允许我们形成单元素集合。 后继是用来定义自然数的常用的集合论编码。在这种编码中,0是空集(),而1是0的后继:

类似地,2 是1 的后继:

如此类推。这个定义的推论是对于任何自然数等同于由它的所有前驱(predecessor)组成的集合。

我们希望可以形成包含所有自然数的一个集合,但是只使用其他ZF公理的话并不能做到这一点。因此,有必要加入无穷公理以假定这个集合的存在。它是通过类似于数学归纳法的方法完成的:首先假定有一个集合包含零,并接着规定对于的所有元素,这个元素的后继也在中。

这个集合可以不只是包含自然数,还包含别的元素。但是我们可以应用分类公理模式来除去不想要的元素,留下所有自然数的集合。通过外延公理可知这个集合是唯一的。应用分类(分离)公理的结果是:


用非形式化的语言陈述:所有自然数的集合存在;这里的自然数要么是零,要么是一个自然数k的后继,并且的每个元素要么是0要么是的另外一个元素的后继。

所以这个公理的本质是:

有一个集合包含所有的自然数。

无穷公理也是von Neumann-Bernays-Gödel 公理之一。

引用

  • Paul Halmos (1960) Naive set theory. Princeton, NJ: D. Van Nostrand Company. Reprinted 1974 by Springer-Verlag. ISBN 0-387-90092-6.
  • Thomas Jech (2003) Set Theory: The Third Millennium Edition, Revised and Expanded. Springer-Verlag. ISBN 3-540-44085-2.
  • Kenneth Kunen (1980) Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.

本页面最后更新于2021-08-20 16:44,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器