万维百科

概率密度函数本文重定向自 概率密度函数

盒状图与概率密度函数展示的正态分布 N(0, σ2).

数学中,连续型随机变量概率密度函数Probability density function,简写作pdf ),在不致于混淆时可简称为密度函数,是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。图中,横轴为随机变量的取值,纵轴为概率密度函数的值,而随机变量的取值落在某个区域内的概率为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。

概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数概率质量函数混淆。

常见定义

对于一维实随机变量X,设它的累积分布函数是。如果存在可测函数 ,满足:

那么X 是一个连续型随机变量,并且是它的概率密度函数。

性质

连续型随机变量的概率密度函数有如下性质:

如果概率密度函数在一点连续,那么累积分布函数可导,并且它的导数

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率

并不是不可能事件。

例子

连续型均匀分布的概率密度函数

最简单的概率密度函数是均匀分布的密度函数。对于一个取值在区间上的均匀分布函数,它的概率密度函数:

也就是说,当x 不在区间上的时候,函数值等于0,而在区间上的时候,函数值等于 。这个函数并不是完全的连续函数,但是是可积函数。

正态分布的概率密度函数

正态分布是重要的概率分布。它的概率密度函数是:

随着参数变化,概率分布也产生变化。

应用

随机变量X的n阶是X的n次方的期望值,即

X的方差

更广泛的说,设 为一个有界连续函数,那么随机变量的数学期望

特征函数

对概率密度函数作类似傅里叶变换可得特征函数

特征函数与概率密度函数有一对一的关系。因此,知道一个分布的特征函数就等同于知道一个分布的概率密度函数。

参见

引用

  1. ^ Shaou-Gang Miaou; Jin-Syan Chou. 《Fundamentals of probability and statistics》. 高立图书. 2012: 第98页. ISBN 9789864128990.
  2. ^ 2.0 2.1 章昕、邹本腾、漆毅、王奕清. 概率统计双博士课堂(浙大3版概率论与数理统计). 机械工业出版社. 2003. ISBN 7-111-12834-6.
  3. ^ 邵宇. 《微观金融学及其数学基础》. 清华大学出版社. 2004: 398–400. ISBN 7-302-07627-8.
  4. ^ 邵宇. 《微观金融学及其数学基础》. 清华大学出版社. 2004: 417–418. ISBN 7-302-07627-8.

书籍

  • 钟开莱. 《概率论教程》. 上海科学技术出版社. 1989. ISBN 7-5323-0648-8.



本页面最后更新于2021-09-15 09:55,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器