万维百科

矩阵环

矩阵环就是考虑矩阵R下经由矩阵加法矩阵乘法形成的环,从环R中的元素组成的n×n 方阵形成的矩阵环记作Mn(R),某些无限阶矩阵也可以组成无限矩阵环,任何矩阵环的子环也都是矩阵环。如 R​​是一个交换环,则矩阵环Mn(R)是一个结合代数,被称为矩阵代数。在这种情况下,如果 M是一个矩阵, r R,那么矩阵Mr也是矩阵,其矩阵元为M的矩阵元乘r

这篇文章假设R是可结合环且单位1≠0(单位1=0的只有零环),虽然没有单位也可以形成矩阵环。

例子

  • 任意R环上的矩阵,表示为n×n 。这通常被称为n x n全阵环。这些矩阵即自由模Rn的自同态。
  • 一环上所有上三角矩阵(或所有下三角矩阵成为环。

相关条目

参考

  • Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, 1999, ISBN 978-0-387-98428-5

本页面最后更新于2021-09-01 11:53,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器