万维百科

第一可数空间本文重定向自 第一可数空间

拓扑学上,第一可数空间(First-countable space)是指有可数邻域基拓扑空间,即对于,存在的开邻域序列,使得对于任意的邻域,存在整数使得

例子与反例

大部分数学中的常见空间为第一可数的,像是所有度量空间皆为第一可数,要证明此点,只要注意到所有以x为中心,半径为1/nn为正整数的开球,形成了于x点的可数局部基。

一个无限集(像是实数线)的余有限拓扑则非第一可数。在商空间中,所有自然数被视为一个点,此空间也非第一可数。

第一可数性比第二可数性来得弱,所有第二可数空间皆为第一可数,但不可数的离散空间是第一可数而非第二可数。

性质

  • 第一可数性可传递至子空间。
  • 在第一可数空间中,序列紧致和可数紧致等价。
  • 任何第一可数空间的可数为第一可数,但不可数积则未必。

本页面最后更新于2021-08-26 05:13,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器