万维百科

罗素悖论

罗素悖论(英语:Russell's paradox),也称为理发师悖论书目悖论,是英国哲学家罗素于1901年提出的悖论,一个关于的内涵问题。

罗素悖论

我们通常希望:任给一个性质(例如:"年满三十岁"就是一个性质),满足该性质的所有集合总可以组成一个集合。但这样的企图将导致悖论:

罗素悖论:设有一性质,并以一性质函数表示:,且其中的自变量有此特性:

现假设由性质能够确定一个满足性质的集合——也就是说 。那么现在的问题是是否成立?

首先,若,则的元素,那么具有性质,由性质函数可以得知

其次,若,根据定义,是由所有满足性质的类组成,也就是说,具有性质,所以

罗素悖论还有一些更为通俗的描述,如理发师悖论、书目悖论。但理发师悖论被一些人认为只是罗素悖论的一种描述方式,仅以理发师悖论并无法完全叙述罗素悖论。

罗素悖论在类的理论中通过内涵公理而得到解决。

理发师悖论和罗素悖论等价

理发师悖论和罗素悖论是等价的:

因为,如果把每个人对应一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他对应的集合里的元素,都是城里不属于自己对应的集合的人,并且城里所有不属于自身对应集合的人都属于理发师对应的集合,那么他是否属于他自己对应的集合?这样就由理发师悖论得到罗素悖论。反过来的变换也是成立的。


罗素悖论与书目悖论等价

另一种等价的悖论为书目悖论,第一类的书的目录有它自己的条目,经典的例子就是维基百科。第二类的书目录则没有它自己的条目,一般的书目都是如此,问:今有一图书馆员,想将第二类的书名编辑成一册,则将所有第二类书籍名称统整的该书该不该拥有自己名称的条目?

假设(1):拥有自己名称的条目

假设(2):不拥有自己名称的条目


分析:

假设(1):拥有自己名称的条目

        表示該書是一本第一類的書
        =>與命題不符(該書目錄只有第二類)=>是第二類的書

假设(2):不拥有自己名称的条目

        表示該書為一本第二類的書
        =>與命題不符(在目錄沒有該書名)=>是第一類的書

因为,如果把每本书对应一个集合,这个集合的元素被定义成这本书分类的方式。那么,该统整书对应的集合里的元素,都是馆内不属于自己对应的集合的书,并且馆内所有不属于自身对应集合的书都属于该统整书对应的集合,那么该书是否属于它自己对应的集合?这样就由书目悖论得到罗素悖论。

参考来源

  1. ^ Press, The MIT. Russell's Paradox. The MIT Press. [2019-08-30] (英语).

参考条目


本页面最后更新于2021-09-24 22:09,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器