万维百科

补集

集合论和数学的其他分支中,存在补集的两种定义:相对补集绝对补集

相对补集

相对补集

集合,则中的相对补集是由所有属于但不属于的元素组成的集合。

中的相对补集记为

形式上:

例如:

  • 实数集合,有理数集合,则无理数集合。

下列命题给出一些相对补集同并集交集等集合论运算相关的一些常用性质。

命题1:若是集合,则下列等式恒成立:

绝对补集

绝对补集

若给定全集,则中的相对补集称为绝对补集(简称补集),记为,即:

(注意:根据ISO与中华人民共和国国家标准中子集的补集记作。)

例如,若全集为自然数集合,则奇数集合的补集为偶数集合。

下列命题给出一些绝对补集同并集和交集等集合论运算相关的一些重要性质。

命题2:若是全集的子集,则下列恒等式成立:

德摩根定律
补集律:
对合
相对补集和绝对补集的关系:

上述表明,若的非空子集,则的一个分割

补集的符号

补集的符号为“∁”(Unicode:U+2201)。

参见


本页面最后更新于2021-08-04 17:45,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器