万维百科

集合族

集合论和有关的数学分支中,给定集合S子集F 叫做S子集族(或称S 上的集合族)。更一般的说,无论什么任何集合的类都叫做集合族。

例子

  • 幂集P(S )是在S 上的集合族。
  • n元素集合Sk 元素子集S (k )形成了集合族。
  • 所有序数的类Ord是“大”集合族;它自身不是集合而是真类
  • S = {a,b,c,1,2}。(在多重集含义上的) S 上集合族的一个例子是当 A1 = {a,b,c},A2 = {1,2},A3 = {1,2},A4 = {a,b,1} 时的 F = {A1, A2, A3, A4}。
  • 样本空间的某些子集组成的集合叫做集合族。

特例

性质

  • S 的任何子集族自身都是幂集P(S )的子集。
  • 不论什么集合族都是所有集合的真类(全集V子类
  • 菲利浦·赫尔提出的赫尔婚姻定理,给出了非空集(允许重复)的有限族具有互异代表元系的充要条件。

C族

最简单的集合族是由有限集M 的全体子集所构成的,简称为C 族。C 族有以下基本的性质: 设,则集合M 的全部子集构成的类M*, 即

参见

  1. ^ https://www.cnblogs.com/uangjianghui/p/7684062.html
  2. ^ 刘诗雄《数学奥林匹克小丛书·高中卷·集合》,2012,第43页

本页面最后更新于2021-07-21 05:59,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器